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Abstract In this paper, we investigate the dynamics
of the inverted pendulum with delayed feedback con-
trol. The existence and stability of multiple equilibria
depending on the control strengths are studied. Tak-
ing the time delay of the control terms as a parameter,
periodic oscillations induced by delay are found. By
using the method of multiple scales, the effect of the
control gains and the relative mass of the pendulum
on the stability and direction of Hopf bifurcations are
discussed. Numerical simulations are employed to il-
lustrate the obtained theoretical results.

Keywords Inverted pendulum · Discrete delay ·
Method of multiple scales · Hopf bifurcation

1 Introduction

In the field of control theory, research on the inverted
pendulum have implications for a great many typical
problems such as nonlinearity, robustness, and stabi-
lization. Many control systems have been designed for
stabilizing and controlling the amplitude of a single
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inverted pendulum that is either fixed to the ground or
on a cart that moves on a rail. The study of the single
inverted pendulum originated from the rocket booster,
then stimulated by the biped robot there are extensive
discussions on the multiple inverted pendulums. The
research methods and technologies arising from the
model of the inverted pendulum(s) attribute to the ap-
plications to both biological and mechanical balancing
tasks, such as how to avoid falling in the elderly while
walking, vertical launch of a rocket, control the mo-
tion of the robot, and space docking. Also, by means
of the rich properties the inverted pendulum provides,
the model plays an important role in detecting abilities
of new control methods on dealing with nonlinearity
and instability. The control process aims at better per-
formance of stabilizing the inverted pendulum at the
balancing position without exaggerated robustness and
oscillation. See [1–7] for the dynamical research of the
inverted pendulum and its applications.

Typically, when the friction between the cart and
the track together with the friction between the pendu-
lum and the pivot are neglected, the dynamics of the
inverted pendulum fixed through a pivot on a cart that
moves on a rail are governed by the following equa-
tions [8] using Hamilton’s principle (see Fig. 1):
⎧
⎪⎨

⎪⎩

(m + M)ẍ(t) + m�
2 θ̈ (t) cos θ(t) − m�

2 θ̇2(t) sin θ(t)

= F(t),

m�
2 ẍ(t) cos θ(t) + 4

3m(�
2 )2θ̈ (t) − mg �

2 sin θ(t) = 0.

See Table 1 for the physical meaning of the parame-
ters.
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Fig. 1 The corresponding model of the inverted pendulum on a
cart

Table 1 Parameters for the neglected friction model

Parameters Description

m Mass of the pendulum

M Mass of the cart

x(t) Displacement of the center of mass of the cart

� Length of the pendulum

F(t) Horizontal control force applied to the cart

θ(t) Rotation angle of the pendulum away from the
top vertical position (θ(t) ∈ [0,2π])

Generally, the control action will take effect only
after some fixed time and the linear control force de-
pending on the rotation angle θ and its velocity θ̇ are
often used in the literature [9, 10] as follows:

F(t) = aθ(t − τ) + bθ̇(t − τ),

where a, b > 0 are the control gains. Eliminating ẍ(t)

and then rescaling F and the time t by (M + m)g and√
3g/2�, respectively, we have the following second-

order differential equation for the rotation angular:
(

1 − 3ρ

4
cos2 θ(t)

)

θ̈ (t) + 3ρ

8
θ̇2(t) sin

(
2θ(t)

)

− sin θ(t) + (
aθ(t − τ) + bθ̇(t − τ)

)
cos θ(t) = 0,

(1)

where ρ = m
(m+M)

< 1 is the relative mass of the pen-
dulum.

The existence of time delay makes the system be-
come an infinite dimensional dynamics, which leads
to more abundant dynamics, but substantially compli-
cates the theoretical analysis. The dynamics of the in-
verted pendulum with delayed feedback control have

been studied by several authors. A mechanical model
of a digital balancing system is constructed and its sta-
bility analysis is presented considering experimental
problems like backlash and sampling delay in [12],
and also the existence and stability of periodic solu-
tions are checked analytically in [13]. Stépán and Kol-
lár [14] construct the stability chart in the space of
the control parameters and the analytical results are
correlated with the experimental observations. Atay
[15] presents sharp results on how to choose the feed-
back parameters of the inverted pendulum with posi-
tion feedback to obtain asymptotic stability. Landry
et al. [16] consider an inverted pendulum attached to
a cart with the delayed control force, which not only
depends on the voltage in the motor driving the cart
and the resistance, but also counters the electromotive
force. They show that for values of the delay below a
critical delay, the system remains stable and the sys-
tem undergoes a supercritical Hopf bifurcation at the
critical delay. In [8, 17, 18], there are three kinds of
friction taken into consideration: simple viscous fric-
tion and two stick slip frictions. Cabrera and Milton
[19] present some experimental observations repro-
duced by a model of an inverted pendulum with time
delayed feedback. Especially, we would like to men-
tion the works of Sieber and Krauskopf [9, 10, 20],
which are most directly related to our work. In [9],
the linear stability of system (1) at the origin has been
analyzed. Also, Sieber and Krauskopf show there is a
codimension-three bifurcation point in (1), and then by
computing and analyzing a reduced three-dimensional
center manifold they find the stable small-amplitude
solutions outside the region of the linear stability of
the pendulum. In [10], Sieber and Krauskopf show that
system (1) may exhibit small chaotic motion about
the upside-down position and find the complex mo-
tion near the triple-zero eigenvalue singularity. In ad-
dition, we would like to mention that in the absence
of feedback control, the stabilization of inverted pen-
dulum can be achieved by using the high-frequency
excitation. This is also a famous problem and has been
extensively studied in the field of mechanics and ap-
plied mathematics. We refer the interested readers to a
detailed review due to Ibrahim [11] for more informa-
tion.

The ultimate goal of controlling the cart-pendulum
system is to turn the unstable system into a stable one
through the proper ways of control. Once the model
has been set up, we can find the balancing position by
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adjusting the values of parameters. As we all know,
without any control, the pendulum can stay stable in
the downright position while unstable in the upright
position. Here, we focus on when and where the pen-
dulum can stay balancing or generate low amplitude
oscillation with the horizontal linear feedback con-
trol, which can be explored through the linear stability
analysis and Hopf bifurcation analysis. Once the equi-
libria found, the aim to stabilize the pendulum in the
equilibrium position can be achieved by modulating
the values of the parameters and the time delay. The
low amplitude oscillation corresponds to the periodic
solution bifurcating from the equilibria. Except for the
zero solution, the cart-pendulum system exists multi-
ple nonzero equilibria depending on the value of the
control gain a in system (1). The main purpose of this
paper is to investigate the stability of nonzero equi-
libria and figure out how the direction and stability of
Hopf bifurcations induced by delay depend on the rel-
ative mass and the control gains.

This paper is organized as follows. Starting from
the linear stability analysis of the inverted pendulum
on a cart with delayed linear control, the stability and
local Hopf bifurcation induced by the time delay are
addressed in Sect. 2. Then in Sect. 3, using the method
of multiple scales, the direction of the Hopf bifurca-
tion and the stability of the periodic solutions are de-
termined. Some numerical simulations are performed
to illustrate the results of the analysis in Sect. 4. Fi-
nally, conclusions are drawn in Sect. 5.

2 Stability and Hopf bifurcation induced by delay

Setting x1(t) = θ(t) and x2(t) = θ̇ (t), Eq. (1) can be
written as the following vector form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = −(3/8)ρ sin(2x1(t))x
2
2 (t)+sinx1(t)

1−(3/4)ρ cos2 x1(t)

− cosx1(t)(ax1(t−τ)+bx2(t−τ))

1−(3/4)ρ cos2 x1(t)
.

(2)

The equilibrium (x̂1, x̂2) of (2) is determined by
tan x̂1 = ax̂1 and x̂2 = 0. It is easy to verify that
when a > 1, the origin E0(0,0) is an equilibrium to-
gether with other two nonzero equilibria E1(x̂11,0)

and E2(x̂12,0); when a ≤ 1, there are two equilibria
E0(0,0) and E3(x̂13,0). Here, x̂11, x̂12, and x̂13 are

roots of the equation tan x̂1 = ax̂1 in the range [0,2π]
and satisfy

0 < x̂11 < π/2 < π < x̂13 < x̂12 < 3π/2. (3)

Linearization of system (2) about the equilibrium
(x̂1, x̂2) gives

(
ẋ1(t)

ẋ2(t)

)

=
(

0 1
r1 0

)(
x1(t)

x2(t)

)

−
(

0 0
r2a r2b

)(
x1(t − τ)

x2(t − τ)

)

, (4)

where

r1 = cos x̂1(1 + tan2 x̂1)

1 − (3/4)ρ cos2 x̂1
,

r2 = cos x̂1

1 − (3/4)ρ cos2 x̂1
.

It follows from (3) that

r1,2 > 0 for E0,E1, r1,2 < 0 for E2,E3. (5)

The characteristic equation of system (4) at the
equilibrium (x̂1, x̂2) is given by

�(τ) = λ2 − r1 + r2(bλ + a)e−λτ = 0. (6)

Notice whether Eq. (6) has the imaginary roots with
zero real part is closely related to the stability and
bifurcation of the equilibria. If we assume that iω

(ω > 0) is a root of Eq. (6), then

−ω2 − r1 + r2(biω + a)(cosωτ − i sinωτ) = 0,

which is equivalent to

{−r1 − ω2 + r2(bω sinωτ + a cosωτ) = 0,

bω cosωτ − a sinωτ = 0.
(7)

From (7), we have

ω4 + (
2r1 − r2

2b2)ω2 + (
r2

1 − a2r2
2

) = 0. (8)

Set

ω± =

√
√
√
√ (r2

2 b2 − 2r1) ±
√

4a2r2
2 + b4r4

2 − 4r1r
2
2b2

2
,

(9)
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τ+
j =

{ 1
ω+ {arctan ( b

a
ω+) + 2jπ}, r1, r2 > 0,

1
ω+ {π + arctan ( b

a
ω+) + 2jπ}, r1, r2 < 0,

j = 0,1,2, . . . , (10)

and

τ−
j = 1

ω−

{

arctan

(
b

a
ω−

)

+2jπ

}

, j = 0,1,2, . . . .

(11)

We first investigate the stability of Hopf bifurcation
induced by delay at the zero equilibrium E0. For the
zero equilibrium E0, we have r1 = r2 = 4

4−3ρ
> 0. In

this case, (8) becomes

ω4 + k
(
2 − kb2)ω2 + k2(1 − a2) = 0. (12)

with k = 4
4−3ρ

. By a simple calculation, one can show

that when 0 < a < 1 and b <

√

2(1 + √
1 − a2)/k,

Eq. (12) has no purely imaginary roots; when either
a > 1 and b > 0, or a = 1 and b >

√
2/k, or 0 < a < 1

and b =
√

2(1 + √
1 − a2)/k, Eq. (12) has a pair of

purely imaginary roots ±iω+ at τ+
j ; when 0 < a < 1

and b >

√

2(1 + √
1 − a2)/k, Eq. (12) has a pair of

purely imaginary roots ±iω+ (resp. ±iω−) at τ+
j

(resp. τ−
j ). Denote by

λ
(
τ±
j

) = μ
(
τ±
j

) + iω
(
τ±
j

)
, j = 0,1,2, . . . ,

the root of Eq. (6) satisfying

μ
(
τ±
j

) = 0, ω
(
τ±
j

) = ω±.

From (6) and (7), the derivatives of λ with respect to τ

at τ±
j are

(
dλ

dτ

)−1

= 2eλτ

k(bλ + a)
+ b

λ(bλ + a)
− τ

λ

and

Re

((
dλ

dτ

))∣
∣
∣
∣

−1

τ=τ±
j

= ±
√

4a2 + b4k2 − 4kb2

k(a2 + b2ω2±)
. (13)

Notice the fact that the product of the real parts of ( dλ
dτ

)

and ( dλ
dτ

)−1 is positive. Then, by (13), we have the fol-
lowing transversality conditions:

d

dτ
Reλ

(
τ+
j

)
> 0,

d

dτ
Reλ

(
τ−
j

)
< 0.

To study the stability of the equilibrium E0, it is im-
portant to determine whether τ+

0 < τ−
0 or not. Accord-

ing to the proof in Appendix A, we have τ+
0 < τ−

0 for
the equilibrium E0.

Clearly, the zero equilibrium E0 has at least a zero
eigenvalue at a = 1. In addition, notice that when
τ = 0, two roots of Eq. (6) with r1 = r2 = k have neg-
ative real parts if and only if a > 1 and b > 0. There-
fore, according to the above discussions and Rouchés
theorem [21], we have the following results on the dis-
tribution of roots of Eq. (6).

Lemma 2.1 Assuming that r1 = r2 = k and ω± and
τ±
j are defined by (9), (10), and (11), respectively, then

for the zero equilibrium E0, we have the following:

(i) When 0 < a < 1 and b > 0, Eq. (6) has at least a
root with positive real parts for any τ ≥ 0;

(ii) When a > 1 and b > 0, all roots of Eq. (6) have
negative real parts for τ ∈ [0, τ+

0 ) and Eq. (6) has
at least a pair of roots with positive real parts for
τ > τ+

0 ;

(iii) When 0 < a < 1 and b <

√

2(1 + √
1 − a2)/k,

Eq. (6) has no purely imaginary roots; when
a > 1 and b > 0, or 0 < a < 1 and b =√

2(1 + √
1 − a2)/k, Eq. (6) has a pair of purely

imaginary roots ±iω+ at τ+
j ; when 0 < a < 1

and b >

√

2(1 + √
1 − a2)/k, Eq. (6) has a pair

of purely imaginary roots ±iω+ (resp. ±iω−) at
τ+
j (resp. τ−

j );

(iv) When a = 1 and b >
√

2/k, Eq. (6) has a zero
root λ = 0 and has a pair of purely imaginary
roots ±iω+ at τ+

j ; when a = 1 and b <
√

2/k,
Eq. (6) has a zero root λ = 0 and has no other
roots on the imaginary axis; when a = 1, b =√

2/k and τ �= √
2/k, Eq. (6) has a double zero

root λ = 0 and has no other roots on the imag-
inary axis; when a = 1, b = τ = √

2/k, Eq. (6)
has a triple zero root λ = 0 and has no other roots
on the imaginary axis.

From Lemma 2.1 and the results regarding the sta-
bility and bifurcation of the equilibrium of functional
differential equations in [22], we have the following
results on the stability of the zero equilibrium of sys-
tem (2).
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Theorem 2.2 Assuming that r1 = r2 = k and ω± and
τ±
j are defined by (9), (10), and (11), respectively, then

we have the following:

(i) When 0 < a < 1 and b > 0, the zero equilibrium
of system (2) is unstable for any τ ≥ 0;

(ii) When a > 1 and b > 0, the zero equilibrium of
system (2) is asymptotically stable for τ ∈ [0, τ+

0 )

and unstable for τ > τ+
0 ;

(iii) When a > 1 and b > 0, or 0 < a < 1 and b =√

2(1 + √
1 − a2)/k, system (2) undergoes Hopf

bifurcations near the zero equilibrium at τ+
j ;

when 0 < a < 1 and b >

√

2(1 + √
1 − a2)/k,

system (2) undergoes Hopf bifurcations near the
zero equilibrium at τ±

j ;

(iv) When a = 1 and b >
√

2/k, system (2) under-
goes Hopf bifurcations near the zero equilibrium
at τ+

j ; when a = 1, b = √
2/k and τ �= √

2/k,
system (2) has a double zero singularity; when
a = 1, b = τ = √

2/k, system (2) has a triple zero
singularity.

In the following, we analyze the stability and Hopf
bifurcations induced by delay for nonzero equilibria.
First, it follows from (3), (5), and (6) that when τ = 0,
the nonzero equilibria Ei, i = 1,2,3, have at least one
root with positive real part.

By (3) and (5), we have

r1 − ar2 = 1

(1 − (3/4)ρ cos2 x̂1) cos(x̂1)

×
(

1 − sin(2x̂1)

2x̂1

){
> 0, for E1,

< 0, for E2 and E3,

and then r2
1 − a2r2

2 > 0 for all nonzero equilibria
Ei, i = 1,2,3. Since r1 < 0 for E2 and E3 by (5), we
have

b2r2
2 − 2r1 > 0 and b4r4

2 − 4r1r
2
2 b2 + 4a2r2

2 > 0.

So, for nonzero equilibria Ei , i = 2,3, the characteris-
tic equation (6) always has a pair of purely imaginary
roots ±iω+ (resp. ±iω−) at τ+

j (resp. τ−
j ). Notice that

for the equilibrium E1, r1,2 > 0 according to (5). Thus,
by (10) and (11), it is clear to show that τ+

0 < τ−
0 for

E1 using the same method as for E0. However, for E2

and E3, by (10) and (11), we have

τ+
0 = 1

ω+

{

π + arctan

(
b

a
ω+

)}

,

τ−
0 = 1

ω−
arctan

(
b

a
ω−

)

.

Whether τ+
0 > τ−

0 or not is determined by the val-
ues of control gains a, b and the relative mass of
the pendulum ρ. When some certain values are given,
τ+

0 > τ−
0 is satisfied. In Fig. 2, for the nonzero equi-

librium E2, it is clear that the region above the dashed
line denoting τ+

0 < τ−
0 while the region below the

dashed line denoting τ+
0 > τ−

0 . The real line where the
nonzero equilibrium appears is just below the dashed
line. That is to say for all 1 < a < 4.5, τ+

0 > τ−
0 is

satisfied. In Fig. 3, for the nonzero equilibrium E3, it
is clear that the region in the internal of the dashed
line denoting τ+

0 < τ−
0 while the region in the exter-

nal of the dashed line denoting τ+
0 > τ−

0 . The real
line where the nonzero equilibrium appears is partly
in the external of the dashed line. That is to say for
0.019 < a < 0.097, τ+

0 < τ−
0 is satisfied.

Fig. 2 The relation
between critical values of
τ+

0 and τ−
0 for the nonzero

equilibrium E2 when
1 < a < 4.5. The dashed
line denotes τ+

0 = τ−
0 when

b = 1 and ρ = 2
3 ; The real

line denotes tanx1 = ax1,
where there is the
equilibrium E2 when b = 1
and ρ = 2

3
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Fig. 3 The relation
between critical values of
τ+

0 and τ−
0 for the nonzero

equilibrium E3 when
0 < a < 1. The dashed line
denotes τ+

0 = τ−
0 when

b = 1 and ρ = 2
3 ; The real

line denotes tanx1 = ax1,
where there is the
equilibrium E3 when b = 1
and ρ = 2

3 . The horizontal
coordinates of A and B are
0.019 and 0.097

Also, the transversality conditions for the nonzero
equilibria hold. That is,

Re

((
dλ

dτ

))∣
∣
∣
∣

−1

τ=τ±
j

= ±
√

4a2r2
2 + b4r2

2 − 4r1r
2
2b2

r2
2 (b2ω2± + a2)

.

(14)

So, d
dτ

Reλ(τ+
j ) > 0, d

dτ
Reλ(τ−

j ) < 0. Then we have
the following results on the stability and Hopf bifurca-
tions of the nonzero equilibria of system (2).

Theorem 2.3 Assume that ω± and τ±
j are defined by

(9), (10), and (11), respectively.

(i) The nonzero equilibrium E1 of system (2) is un-
stable for all τ ≥ 0.

(ii) If τ+
0 < τ−

0 , the nonzero equilibria E2 and E3

of system (2) are unstable for all τ ≥ 0, while
if τ+

0 > τ−
0 , there are positive integers mp

(p = 1,2) such that the nonzero equilibria E2

and E3 of system (2) are unstable for

τ ∈ [0, τ−
0 ) ∪ (

τ+
0 , τ−

1

) ∪ · · · ∪ (
τ+
mp−1, τ

−
mp

)

∪ (
τ+
mp

,+∞)
,

and stable for

τ ∈ (
τ−

0 , τ+
0

) ∪ (
τ−

1 , τ+
1

) ∪ · · · ∪ (
τ−
mp

, τ+
mp

)
,

p = 1,2,

where p = 1 and p = 2 correspond to E2 and E3,
respectively.

(iii) System (2) undergoes Hopf bifurcations near the
nonzero equilibria Ei (i = 1,2,3) at τ = τ±

j .

3 Direction and stability of Hopf bifurcation

In this section, we apply the method of multiple scales
to the nonlinear systems at the zero equilibrium E0 to
obtain the normal form determining the direction of
the Hopf bifurcation and the stability of the periodic
solutions. This method is useful, for example, in the
analysis of systems near a Hopf bifurcation.

Theorems 2.2 and 2.3 show that if a > 1 and b > 0

or 0 < a < 1 and b =
√

2(1 + √
1 − a2)/k system (2)

undergoes Hopf bifurcation near the zero equilibrium
at τ±

j . Following the ideas of Nayfeh [23], we derive
the explicit formulaes determining the direction and
stability of these Hopf bifurcations using the method
of multiple scales.

For simplification of notations, we denote the crit-
ical value by τc and the corresponding purely imagi-
nary roots by ±iωc . Before rescaling the time t , we
first add some transformations into the system. Casted
into Taylor series truncating the equations at the third-
order terms, system (2) reads:

ẋ = Lx(t) − Rx(t − τ) + f
[
x(t),x(t − τ)

]
, (15)

where

L =
[

0 1
k 0

]

, R =
[

0 0
ak bk

]

,

x(t) =
[
x1(t)

x2(t)

]

, f =
[

0
h1

]

,

in which

h1 = −
(

k2 − 5

6
k

)

x3
1(t) +

(

k2 − k

2

)

× [
ax2

1(t)x1τ + bx2
1(t)x2τ

] − (k − 1)x1(t)x
2
2(t)
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and

x1τ = x1(t − τ), x2τ = x2(t − τ).

Rescaling the time by t 	−→ t/τ , Eqs. (15) become:

ẋ = τLx(t) − τRx(t − 1) + τ f
[
x(t),x(t − 1)

]
. (16)

The linearizing equation of Eq. (16) is

Lτ (x) = τLx(t) − τRx(t − 1). (17)

It follows from Lemma 2.1 that at the critical value
τc the characteristic equation of Eq. (17) has a pair
of purely imaginary roots ±iωcτc and no other roots

in the imaginary axis. Theorem 2.3 shows that sys-
tem (16) undergoes the Hopf bifurcation near the zero
equilibrium at τ = τc. The properties of Hopf bifurca-
tion at the critical value τc such as direction and stabil-
ity can be investigated by the so-called normal form.
Employing the method of multiple scales as shown in
[23] (see Appendix B for details), we have the follow-
ing normal form truncated the third order associated
with the Hopf bifurcation at the critical value τc:

dA

dt
= Aδμ1 + A2Āμ2, (18)

where

μ1 = kbω2
ce

−iωcτc − 2k(iωc)(ae−iωcτc − 1)

k(1 − ae−iωcτc ) + ω2
c (bkτ 2

c e−iωcτc − 1) − akτ 2
c (iωc)e−iωcτc

and

μ2 = (iωcτc){−(3k2 − 5k
2 ) + (k2 − k

2 )[2e−iωcτc (a + biωc) + eiωcτc (a − biωc] − (k − 1)ω2
c}

k(1 − ae−iωcτc ) + ω2
c (bkτ 2

c e−iωcτc − 1) − akτ 2
c (iωc)e−iωcτc

.

It is convenient for analysis to transform the normal
form (18) into polar coordinates. Setting A = αeiβ

where α = α(t) and β = β(t) then substituting it into
Eq. (18) and separating the real and imaginary parts,
we can obtain the following real-valued normal form
of the bifurcation:

dα

dt
= αδ Re (μ1) + α3 Re (μ2),

dβ

dt
= δ Im(μ1) + α2 Im(μ2).

(19)

The equation governing the time variation of β af-
fects the speed of the rotation of the unit angular ve-
locity. But the properties of the Hopf bifurcation like
stability and direction is completely determined by
the amplitude equation governing the time variation
of α. When the values of the parameters are fixed,
the signs of Re (μ1) and Re (μ2) can be obtained. It
is well known that the generic Hopf bifurcation corre-
sponds to the situation Re (μ2) �= 0, and that the sign
of Re (μ1)Re (μ2) determines the direction of the bi-
furcation and the sign of Re (μ2) determines the sta-
bility of the nontrivial periodic orbits [25].

Then we have the following results about the direc-
tion and stability of Hopf bifurcations at τ±

j .

Theorem 3.1 For (19), as parameters (a, b,ρ, τ )

vary such that

(i) When Re (μ1)Re (μ2) < 0, then the Hopf bifur-
cation is supercritical type;

(ii) When Re (μ1)Re (μ2) > 0, then the Hopf bifur-
cation is subcritical type;

(iii) If Re (μ2) < 0, the nontrivial periodic solution is
stable; If Re (μ2) > 0, the nontrivial periodic so-
lution is unstable.

4 Numerical simulations

To supplement our theoretical work, we consider par-
ticular examples and compare the predictions obtained
in the previous sections with the numerical simulations
by Matlab.

The previous work showed that for the system of
the inverted pendulum with delayed control the val-
ues of parameters a and b can be marked off to two
parameter regions D1 and D2. D1: a > 1, b > 0, and
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Fig. 4 Re(μ1) as a
function of control gains a

and b at ρ = 2/3

Fig. 5 Re(μ2) as a
function of control gains a

and b at ρ = 2/3

D2: 0 < a < 1, b > 0. When a and b belong to D1,
there are three equilibria E0, E1 and E2. When it
comes to D2, there are two equilibria E0 and E3. In
the following subsections we consider the different re-
gions orderly to perform the numerical computations.

4.1 D1: a > 1, b > 0

According to Theorem 3.1, the direction and stabil-
ity of Hopf bifurcations are determined by the signs
of Re(μ1)Re(μ2) and Re(μ2), respectively. We can
see from Fig. 4 that Re(μ1) > 0. Thus, the direction
and stability of Hopf bifurcations are completely de-
termined by the sign of Re(μ2). Figure 5 shows the
effect of the control gains a and b on Re(μ2). In the
a − b plane, there are two regions: one corresponds to
Re(μ2) < 0, which implies the occurrence of the su-
percritical Hopf bifurcation, and the other corresponds
to Re(μ2) < 0, which implies the occurrence of the
subcritical Hopf bifurcation. In the case of supercriti-
cal Hopf bifurcation, there exists a stable periodic orbit
near the zero equilibrium for sufficiently small μ > 0.
In the case of subcritical Hopf bifurcation, the Hopf

bifurcation occurs for sufficiently small μ < 0 and the
bifurcating periodic orbit is unstable. In the following
numerical simulations, we are interested in the super-
critical Hopf bifurcations. Taking a = 1.55, b = 1, and
ρ = 2/3, then we have

E0 = (0,0), E1
.= (1,0), E2

.= (4.5722,0).

According to Theorem 2.3, E1 is unstable for all
τ ≥ 0. For the zero equilibrium E0, when τ = 0 E0

is stable. As τ varies, according to Theorem 2.1 the
zero equilibrium E0 changes from stability to instabil-
ity due to the Hopf bifurcation at τ = τ+

0 near E0. By
(10), we have the critical value τ+

0
.= 0.5080. Then, in

terms of Figs. 4 and 5, we have

Re(μ1) > 0, Re(μ2) < 0,

which implies that system (2) undergoes a super-
critical Hopf bifurcation at τ+

0 . When we take τ =
0.47 < τ+

0 , the equilibrium is stable, as shown in
Fig. 6. Comparatively, when we take τ = 0.52 > τ+

0 ,
the zero equilibrium is unstable with a stable periodic
solution (Fig. 7). In addition, we make it clear that all
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Fig. 6 When
τ = 0.47 < τ+

0 , a = 1.55,
b = 1, ρ = 2

3 , there is no
periodic solution
bifurcating from E0 and the
zero equilibrium E0 is
stable. The initial value is
(0.2,0.05)

Fig. 7 When
τ = 0.52 > τ+

0 , a = 1.55,
b = 1, ρ = 2

3 , the periodic
solution bifurcating from
E0 is stable. The initial
value is (0.005,0.005)

the results above are local. That is, they are available
only for a sufficient small neighborhood of the critical
time delay.

As for the nonzero equilibrium E2, it follows from
Eqs. (10) and (11) that

τ+
0

.= 1.5169, τ−
0

.= 0.3967.

According to Theorem 2, there are stability switches
for τ ≥ 0. We can calculate more values of the critical
delays τ±

j and find out that

τ−
0 < τ+

0 < τ−
1 < τ+

1 < τ−
2 < τ+

2 · · ·
< τ−

6 < τ+
6 < τ−

7 < τ+
7 < τ+

8 < τ−
8 .

Theorem 2.3 implies that there are 8 switches from
instability to stability back to instability, E2 is unstable
for

τ ∈ [
0, τ−

0

)∪ (
τ+

0 , τ−
1

)∪ · · · ∪ (
τ+

6 , τ−
7

)∪ (
τ+

7 ,+∞)
,

and stable for

τ ∈ [
τ−

0 , τ+
0

) ∪ (
τ−

1 , τ+
1

) ∪ · · · ∪ (
τ−

7 , τ+
7

)
.

So, the nonzero equilibrium E2 is unstable for τ ∈
[0, τ−

0 ) and stable for τ ∈ (τ−
0 , τ+

0 ). Here, we take
τ = 0.396 and τ = 0.9 for the numerical simulations
(Fig. 8).

4.2 D2: 0 < a < 1, b > 0

According to Theorem 2.1, when a and b belong to
D2 and for all τ ≥ 0, E0 is unstable.

As for the nonzero equilibrium E3, when we take
the parameters a = 0.2305, b = 1, and ρ = 2/3, for the
nonzero equilibrium E3 (E3

.= (3.87,0)), it follows
from Eq. (11):

τ+
0

.= 2.3221, τ−
0

.= 1.4272,

τ+
1

.= 5.4964, τ−
1

.= 8.1799.

Hence, τ+
0 > τ−

0 is satisfied and

τ−
0 < τ+

0 < τ+
1 < τ−

1 .

Theorem 2.3 implies that there is only 1 switch from
instability to stability back to instability, the nonzero
equilibrium E3 is stable for τ ∈ (τ−

0 , τ+
0 ) (Fig. 9) or

τ > τ+
0 , and unstable for τ ∈ [0, τ−

0 ) (Fig. 9).
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Fig. 8 The left figure:
When τ ∈ [0, τ−

0 ), the
equilibrium E2 is unstable.
Here, τ = 0.396, a = 1.55,
b = 1, ρ = 2

3 . The initial
values is (4.2,0); The right
figure: When τ ∈ [τ−

0 , τ+
0 ),

the equilibrium E2 is stable.
Here, τ = 0.9, a = 1.55,
b = 1, ρ = 2

3 . The initial
values is (3.1,0)

Fig. 9 The left figure:
When τ ∈ [0, τ−

0 ), the
equilibrium E3 is unstable.
Here, τ = 1.37, a = 0.2305,
b = 1, ρ = 2

3 . The initial
values is (3.82,0.005); The
right figure: When
τ ∈ [τ−

0 , τ+
0 ), the

equilibrium E3 is stable.
Here, τ = 1.77, a = 0.2305,
b = 1, ρ = 2

3 . The initial
values is (3.82,0.005)

5 Conclusion

In this paper, the model for an inverted pendulum on
a cart with delayed control in the horizontal direc-
tion has been studied. We investigated the stability of
the zero equilibrium together with the nonzero ones.
The a − b parameter plane has been marked off to
different regions through the linear stability analysis.
The results of the stability and Hopf bifurcation anal-
ysis showed that when certain parameter values of a,
b and ρ are chosen and the time delay τ varies the
model achieves stability of the inverted pendulum in
the upright position and also another one or two posi-
tion(s). While in other parameter regions, the robust-
ness induced by the time delay can occur. Even for
the nonzero equilibria E2 and E3, there exist stability
switches from instability to stability back to instabil-
ity at some fixed values as τ varies. Using the control
gains a and b, the relative mass of the pendulum ρ as
the initial systemic parameters and the time delay τ as
perturbation parameter, we studied the direction of the
Hopf bifurcation and the stability of the periodic solu-
tions of the zero equilibrium E0 applying the method

of multiple scales. The normal form derived reflects
both supercritical or subcritical type of Hopf bifurca-
tion can emerge for certain parameter values.

Our numerical simulations in Sect. 4 are parallel
with the theoretical conclusions for the stability and
Hopf bifurcation induced by the time delay. For certain
parameter values, there is a supercritical Hopf bifur-
cation with stable periodic solutions of the zero equi-
librium E0. Numerical simulation implied that for the
nonzero equilibrium there are larger amplitude peri-
odic solutions and more complicated dynamics occur.
In fact, except for Hopf bifurcation, there are codi-
mension 2 bifurcations such as double Hopf bifurca-
tions and Hopf-zero singularities in this inverted pen-
dulum system with delayed feedback control, leading
to more complex dynamics. We will leave the investi-
gation of these codimension 2 bifurcations in the fu-
ture.
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Appendix A: Proof for τ+
0 < τ−

0

Since r1 = r2 = k > 0 for the zero equilibrium, it fol-
lows from (10) and (11) that

τ+
0 = 1

ω+
arctan

(
b

a
ω+

)

,

τ−
0 = 1

ω−
arctan

(
b

a
ω−

)

.

Define a function f of x as follows:

f (x) = 1

x
arctan

(
b

a
x

)

, x > 0,

and then we have

f ′(x) =
b
a
x − arctan ( b

a
x)(1 + b2

a2 x2)

x2(1 + b2

a2 x2)
.

Denote the denominator of the right hand of f ′(x) by

g(x) = b

a
x − arctan

(
b

a
x

)(

1 + b2

a2
x2

)

.

Then we have

g(0) = 0, g′(x) = − arctan

(
b

a
x

)
2b2

a2
x < 0,

which implies that g(x) < 0 for x ∈ (0,∞). Thus,
f (x) is a monotone decreasing function on x ∈
(0,∞). This, together with ω+ > ω−, means that
τ+

0 < τ−
0 .

Appendix B: Derivation of normal form (19)

Let p be the eigenvector of Lτ corresponding to the
eigenvalue iωcτc, and let q be the normalized eigen-
vector of the adjoint operator of Lτ corresponding to
the eigenvalue −iωcτc with the inner product

〈q,p〉 =
2∑

i=1

q̄ipi = 1.

By simple calculations, we have

p = (p1,p2)
T , q = (q1, q2)

T . (20)

Where

p1 = 1, p2 = iωc, q1 = k(aeiωcτc − 1)

2ω2
c + kb(iωc)eiωcτc

,

q2 = iωc

2ω2
c + kb(iωc)eiωcτc

.

We are now in a position to apply the method of
multiple scales to investigate the properties of Hopf
bifurcation at the critical value τc. Because the non-
linearity has no second order terms, we seek a uni-
form second-order approximate solution of Eq. (16) in
power of ε1/2. Since the periodic solution of Hopf bi-
furcation is a small amplitude periodic solution near
the zero equilibrium, we assume that a series solution
of Eq. (16) has the following form:

x(t; ε) = ε1/2x1(T0, T1) + ε3/2x2(T0, T1) + · · · , (21)

where T0 = t , T1 = εt , and ε is a nondimensional
book-keeping parameter. Notice that the secular terms
first appear at O(ε3/2). So, it is sufficient for the time
scale of the second argument to be taken as the form of
T1 = εt . By the chain rule, we would like to introduce
the following differential operator:

d

dt
= α

dT0
+ ε

α

αT1
= D0 + εD1. (22)

In terms of the scales T0 and T1, with the expansion for
small ε the delayed variable x(t − 1) can be expressed
as

x(t − 1; ε) = ε1/2x1(T0 − 1, T1) + ε3/2x2(T0 − 1, T1)

− ε3/2τD1x1(T0 − 1, T1) + · · · . (23)

Next, we introduce the detuning parameter δ to de-
scribe the nearness of τ to the critical value τc defined
by

τ = τc + εδ. (24)

Substituting Eqs. (21)–(24) into Eq. (16) leads to the
following perturbation equations, written up to the
ε3/2 order:

ε1/2 : D0x1(T0, T1) − Lτcx1(T0, T1)

+ Rτcx1(T0 − 1, T1) = 0, (25)
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ε3/2 : D0x2(T0, T1) − Lτcx2(T0, T1)

+ Rτcx2(T0 − 1, T1)

= −D1x1(T0, T1) + δLx1(T0, T1)

+ τ 2
c RD1x1(T0 − 1, T1)

− δRx1(T0 − 1, T1)

+ τcf
[
x1(t),x1(t − 1)

]
. (26)

Equation (25) is the linear homogeneous equation and
has a pair of simple imaginary roots ±iωcτc and all
other eigenvalues have negative real parts. The general
solution is therefore given by

x1(T0, T1) = A(T1)peiωcτcT0 + Ā(T1)p̄e−iωcτcT0, (27)

where the vector is defined by (20).
Due to the characteristic equation, we can obtain

that ωc and τc satisfy the equation

ω2
c + k = kb(iωc)e

−iωcτc + kae−iωcτc . (28)

Substituting (27) into Eq. (26) yields

D0x2(T0, T1) − Lτcx2(T0, T1) + Rτcx2(T0 − 1, T1)

= {[−I + τ 2
c Re−iωcτc

]
pA′

+ [
δL − δ Re−iωcτc

]
pA + τcf∗A2Ā

}
eiωcτcT0

+ c.c + NST, (29)

where

f∗ =
[

0
h2

]

. (30)

In which

h2 = −
(

3k2 − 5k

2

)

+
(

k2 − k

2

)

× [
2e−iωcτc (a + bp2) + eiωcτc (a + bp̄2)

]

− (k − 1)
(
2p2p̄2 + p2

2

)
,

where c.c and NST stand for the complex conjugate
of the preceding terms and terms that do not produce
secular terms.

Equation (29) is the linear nonhomogeneous equa-
tion for x2. We seek its particular solution in the form

x2(T0, T1) = φ(T1)e
iωcτcT0 . (31)

Substituting Eq. (31) into Eq. (29) and deleting eiωcτcT0 ,
we have
[
iωcτcI − τcL + τcRe−iωcτc

]
φ

= [−I + τ 2
c Re−iωcτc

]
pA′ + [

δL − δ Re−iωcτc
]
pA

+ τcf∗A2Ā, (32)

where I is the 3 × 3 identity matrix.
It is clear that det(Lτ − iωcτcI ) = 0 since iωcτc

is the eigenvalue of Lτ . So, we have a slight problem
solving Eq. (32). This difficulty is easy to overcome
following the idea of Kuznetsov [24]. In fact, let T su

be the real eigenspace corresponding to all eigenval-
ues of Lτ other than ±iωcτc. We have that y ∈ T su if
and only if < q, y >= 0. From [24], the restriction of
the linear formation corresponding to (Lτ − iωcτcI ) to
its invariant subspace T su is invertible. That is to say
if the right-hand side of Eq. (32) belongs to invariant
subspace T su and then Eq. (32) has a unique solution
φ ∈ T su by solving so-called bordered system. Thus,
the nonhomogeneous Eq. (32) has solutions provided
that the right-hand side of Eq. (32) be orthogonal to ev-
ery solution of the adjoint homogeneous problem. Let-
ting the inner product of the right-hand side of Eq. (32)
with q be zero yields the solvability condition (18).
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